Search results

1 – 3 of 3
Article
Publication date: 2 March 2012

Xiaojun Zhao, Lin Li, Junwei Lu, Zhiguang Cheng and Tiebing Lu

This paper aims to introduce the decomposed harmonic balance finite element method (HBFEM) to decrease the memory requirement in large‐scale computation of the DC‐biasing magnetic…

Abstract

Purpose

This paper aims to introduce the decomposed harmonic balance finite element method (HBFEM) to decrease the memory requirement in large‐scale computation of the DC‐biasing magnetic field. Harmonic analysis of the flux density and flux distribution was carried out to investigate the DC biased problem in a laminated core model (LCM).

Design/methodology/approach

Based on the DC bias test on a LCM, the decomposed HBFEM is applied to accurately calculate the DC‐biasing magnetic field. External electric circuits are coupled with the magnetic field in the harmonic domain. The reluctivity matrix is decomposed and the block Gauss‐Seidel algorithm solves each harmonic solution of magnetic field and exciting current sequentially.

Findings

The calculated exciting currents and flux density are compared with that obtained from measurement and time domain finite element analysis, respectively, which demonstrates consistency. The DC bias leads to the significant saturation of the magnetic core and serious distortion of the exciting current. The flux density varies nonlinearly with DC bias excitation.

Research limitations/implications

The harmonic balance method is only applicable in solving the steady state magnetic field. Future improvements in the method are necessary in order to manage the hysteresis effects in magnetic material.

Originality/value

The proposed method to solve the DC biased problem significantly reduces the memory requirement compared to the conventional HBFEM. The decomposed harmonic balance equations are solved efficiently by the block Gauss‐Seidel algorithm combined with the relaxation iterative scheme. An investigation on DC bias phenomena is carried out through the harmonic solution of the magnetic field. The decomposed HBFEM can also be applied to solve 3‐D DC‐biasing magnetic field and eddy current nonlinear problems in a practical power transformer.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 November 2007

Jian Tang, Xiang Cui, Lei Qi, Tiebing Lu, Lin Li, Puxuan Zhu, Guang Yang and Weizhen Zhang

The purpose of this paper is to present a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in…

Abstract

Purpose

The purpose of this paper is to present a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in the pipelines due to the inductive coupling in the fault‐to‐ground condition of power lines in close proximity.

Design/methodology/approach

Based on finite difference‐time domain method, an improved method is proposed to calculate transient inductive interference in underground metallic pipelines due to a fault in nearby power lines. The frequency‐dependent problem in the analysis of transient interference is solved in phase domain. Compared with the traditional method, the disposal of phase‐modal transformation matrices’ frequency‐dependent characteristic is avoided and the calculation is simplified by using vector fitting approach and recursive algorithm greatly in the proposed method.

Findings

A novel improved method is proposed to calculate transient induced voltage distribution along underground metallic pipelines due to a fault in nearby power lines. Results show that the peak value of transient induced voltage at the most critical point is about 1.15 times of the magnitude in the steady state without the fault removed and the analysis of transient inductive interference is necessary in the fault‐to‐ground case of power lines.

Practical implications

In order to mitigate the interference from power lines to nearby pipelines, pipelines should be good grounded and positioned as far away from the power line as possible. In high soil resistivity areas, the common corridor should be avoided.

Originality/value

The paper presents a method to calculate the transient induced voltages along the underground pipelines and analyze the transient interference generated in the pipelines due to the inductive coupling in the fault‐to‐ground condition of nearby power lines. The proposed method is general and can also be applied to other transient interference studies such as crosstalk problems of communication networks and interference between power lines and aboveground pipelines or communication cables. Effects of various parameters upon the inductive interference generated in underground pipelines due to a fault in nearby power lines are analyzed to be a guide for controlling the inductive interference.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 August 2018

Mingdong Tang, Youlin Gu, Shigang Wang, Qinghua Liang and Xiaoxi Wang

The purpose of this paper is to provide a safe control strategy for aloft hot-line assembly of connection fittings in 110kV intelligent substations, which is significant to…

Abstract

Purpose

The purpose of this paper is to provide a safe control strategy for aloft hot-line assembly of connection fittings in 110kV intelligent substations, which is significant to research on hot-line working robots.

Design/methodology/approach

This paper addresses challenges of the task and establish the contact models of connection fittings. By using this control strategy, neither high precision vision positioning nor preset global reference coordinate system is required. Visual computing only needs to provide an approximately position for the manipulator end-effector, after which the connection fittings assembly task could be completed with the posture of the manipulator adjusted following the guidance by force-position control. The authors also analyze the influence of the intervention of manipulators on the very non-uniform electric field during the operation.

Findings

This strategy will be particularly useful for the hot-line assembly of connection fittings in 110kV intelligent substations as well as some assembly tasks where uncertain target position and complex contact surface such as cylindrical hole is involved.

Practical implications

This assembly strategy is tested in energized simulated experimental system. The experiment results show that the robot can replace the manual operation to complete the assembly task safely and efficiently.

Originality/value

This assembly strategy is able to achieve the assembly task of connection fittings. Unlike other peg-in-hole assembly strategy, it does not require high stability of manipulator or plane contact surface around the hole.

Details

Industrial Robot: An International Journal, vol. 45 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 3 of 3